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Use of Mathematica
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Introduction:

This homework exercise is dedicated to the exploration of “Mathematica” software. Will
will start by writing a short program that calculates digits of . Then we will proceed with solving
differential equation’s using numerical method and producing a plot for different values of

damping coefficient. Finally will will work on understanding the non approximate solution for

Part 1: Calculation of »
We are going to calculate = using a method developed by Archimedes. The derivation is
provided in the HW manual. Where S approaches = as n approaches infinity.

w(1-]r- (5]

limS, = m
n—-oo

1/2
5 1/2\?

S
_ ez on
Spar =2" (F)

Please see our code bellow:

In[15:= SA1[Sn_, n_] = 22 (n+2) * ((Sn/ 2 (n+2))"(2) + (1-(1-(Sn/ 2" (n+2))"(2))~(1/2))"(2))"~(1/2)

The line above defines function which calculates concurrent Sn

A [ - \ 2
outlis]= 27" 277 s+ (1- 31 - 2742 sn? )

In[16]:= For[1=0@; s1 =2% (2)~(1/2), 1«18, i++, s1 = Snl1[sl, i]; Print[N[s1, 28]]]

The line above is a for loop which uses the formula to calculate 10 values of Pi

.0614674589207181738
.1214451522580522856
.1365484905459392638
.14083311569547529123
.1412772509327728681
.1415138011443018763
.1415729403670913841
.1415877252771597006
.1415914215111999740
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.1415923455701177423
in[17]:= N[Pi, 20]
The actual Pi value up to 19 Decimal places.

Out[17]= 3.1415926535897932385
Figure 1: Mathematica Pi code



In74]:= x = Table[i, {i, @, 9}]
out[74]- {©, 1,2, 3,4,5,6,7,8,9}

n7slk= y = {N[2+ (2)~(1/2), 28]}

out[75]= {2.8284271247461900976}

Inf76l:= For[i=@3 s1 =2x (2)*(1/2), i<9, i++, s1 = Sn1[sl, i];y = Append[y, N[s1, 20]]]
7=y

out[77]= {2.8284271247461900976, 3.0614674589207181738, 3.1214451522580522856, 3.1365484905459392638, 3.1403311569547529123,
3.1412772509327728681, 3.1415138011443010763, 3.1415729403670913841, 3.14158772527715970@6, 3.1415914215111999740]

in[20]:= ListPlot[Transpose@({x, y}, Joined - True, PlotStyle - Hue[.89], AxesLabel » {"n", "Sn"}, PlotRange - All, BaseStyle » {FontFamily - "Times", FontSize - 12},
PlotLabel - "Sn approching Pi"]

Figure 2: Mathematica Sn plot code
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Figure 3: Mathematica Sn Plot
yerror = y -Pi
{—0.3131655288436931499, -0.08081251946690750646, -0.0201475013317409529, -0.0050441630438539746, -0.0012614966350403261,
-9.0003154026570203704, —©.0000788524454921621, -0.0000197132227018543, —4.9283126335378x107°, —1.2326785932645xle'6}

ListPlot[Transpose[ {x, yerror}], Joined -» True, PlotStyle » Hue[.89], AxesLabel » {"n", "Sn"}, PlotRange » All, BaseStyle - {FontFamily - "Times", FontSize -» 12},
PlotLabel - "Approximation Error”]

Figure 4: Mathematica Error Plot code



Approximation Error
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Figure 5: Mathematica Error Plot

Part 2: 1D Oscillator
We have differential equation:

d’x B bdx
e T T T

+ Fycos(wt)
m=1wy=3,F,=1forb = {01,248}
Equation becomes:

X e o248 4 (i)
Fre i {""}dt cos(w

For the purpose of simplicity we will only run program forb =1



Plot Single:

In[333]:=
Plot[Evaluate[x[t] /. solutions[4]], {t, 560, 558}, PlotPoints - 100@, PlotRange » All, Frame - True, FrameLabel » {"time", "displacement"},
ImageSize - {600, 400}, PlotStyle —»Hue[.9], FrameTicks —» { {350, 500}, {-2, 0, 2}, {}, {}}, BaseStyle > {FontFamily —» "Times", FontSize » 16}]
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Figure 6: Single Plot

In[350:= Clear["Global™+"]
omegas = Table [omega, {omega, .1, 9, ©.1}];

In[352]:= odes = Table[x'"'[t] =-9=x[t] -1=*x'[t] + Cos[omega=t], {omega, @, 9, ©.1}];
Length[odes]

Out[353]= 91

In[3541:= solutions = {};

For[i =2, ixlength[odes], i++, var = NDSolve [{odes[i], x[@] =1, x'[@] =@}, X, {t, 500, 550} , MaxSteps - 5600, Method » ExplicitRungeKutta];

solutions = Append[solutions, var]];
solutions;
amplitudes = {};
For[i =1, i< Length[solutions], i++,
answers = Table[N[Evaluate[x[t] /. solutions[i], 1@]], {t, 508, 550, ©.001}];
a = Max[answers];
amplitudes - Append[amplitudes, a]];
Length [amplitudes]

Plot Magnitude:

In[360]:= ListPlot[Transpose@{omegas, amplitudes}, Joined - True, PlotStyle » Hue [.89], PlotRange - All, BaseStyle —» {FontFamily - "Times", FontSize -» 12},

PlotLabel - "b=1", AxesLabel » {"o", "Amplitude"}]

Figure 7: Code



Amplitude
0.351

0.305—
0.25 —
: 0.205—
0.15 —
0.10F
0.05 —
2 4 6 8
Figure 8: Plot
b is the damping coefficient in the system. If b is small, the system will show resonance
at a specific frequency where the amplitude of the displacement reaches maximum. As b

increases, the peak of the resonance curve will shift slightly, meanwhile the amplitude of the
displacement at that frequency will decrease largely.

If b becomes very large, the system will no longer show resonance, the amplitude of the
displacement will decrease gradually with increasing frequency. This is because the damping
force will dominate over the restoring force.

When o (driving frequency) approaches o0 (natural frequency), the system will show
resonance because the driving force is able to supply energy to the system at the same frequency,
causing amplitude to increase to a large extent. As o gets closer to w0, the shape of the plot
becomes narrower and amplitude gets higher. When o is equal to w0, the amplitude of
displacement can be infinite.

151~ ParametricPlot [Evaluate[{y(t], y'[t]} /. sol], (t, 18, 500}, PlotStyle »Hue[.9], ImageSize - {680, 400}, BaseStyle » (FontFamily » "Times", FontSize +16}]

Figure 9: Code



In[296]:= Plot[Evaluate[y[t] /. sol], {t, 4608, 500}, PlotPoints -+ 1800, PlotRange > All, Frame » True, FrameLabel » {"time", "displacement"}, ImageSize » {660, 400},
PlotStyle -» Hue[.9], FrameTicks -» {{350, 500}, {-2, @, 2}, {}, {}}, BaseStyle» {FontFamily » "Times", FontSize -» 16} ]
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Figure 10: Plot
Chosen omega was 1. As it provided stable state. The plots above illustrate Parametric
plot for this value and displacement vs time plots.



Part 3: Nonlinear pendulum (Amirreza)

As g/L =1, we would have: 6” = - sin(0) => 0” + sin(0) = 0.

Here’s the mathematica code used for solving the equation and finding the period of
oscillation; 6’(t = 0) = 0. In this code we started with 6(t = 0) = 0.05.

eqn = {y"[t] + Sin[y[t]] == 0, y[0] == 0.05, y'[0] == 0};

sol = NDSolve[eqn, vy, {t, 0, 50}];

y[t_] := Evaluate[y[t] /. sol[[1]]];

periods = Table[t /. FindRoot[y[t] == y[0] && Y'[t] > O, {t, i}], {i, O, 40, 5}];
period = Mean[Differences[periods]];

Plot[y[t], {t, 0, 50}, AxesLabel -> {"t", "y(1)"}]

Print[ period]

Here are the results of the period duration with different start points:

TethaO T Tetha0 T

0.05 6.2843 0.7 6.4813
0.1 6.2873 0.8 6.5443
0.15 6.2922 0.9 6.617
0.2 6.2991 1 6.7001
0.25 6.308 1.1 6.7943
0.3 6.3189 1.2 6.9004
0.35 6.3318 1.3 7.0194
0.4 6.3467 1.4 7.1525
0.45 6.3638 1.5 7.301
0.5 6.3829 /2 7.4164
0.6 6.4277

And in a plot:
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Figure 11. Period(T) with respect to starting point(6(t = 0))

The blue curve in the plot shows the period duration with different starting points and the red line
shows the value of 2. As we can see, when we start the pendulum with a small angle, the value
of period duration is approximately equal to 2n. However, as we increase the angle, the value of
period duration increases dramatically.

Conclusion:

We can conclude that mathematica is a very powerful tool and that unsolvable analytically
equation can be solved here using just a few lines of codes to what ever precision needed. The
precision was investigated in Part 1. The-non linear applications were investigated in Part 2&3.



